Trung tâm gia sư - dạy kèm tại nhà NTIC Đà Nẵng xin giới thiệu KHÁI NIỆM, ĐỒ THỊ VỀ HÀM SỐ, HÀM SỐ ĐỒNG BIẾN VÀ HÀM SỐ NGHỊCH BIẾN nhằm hổ trợ cho các bạn có thêm tư liệu học tập. Chúc các bạn học tốt môn học này.
Ngày đăng: 21-12-2017
3,536 lượt xem
1. Khái niệm hàm số
- Cho X, Y là hai tập hợp số, ví dụ tập số thực R, hàm số f xác định trên X, nhận giá trị trong Y là một quy tắc cho tương ứng mỗi số x thuộc X với một số y duy nhất thuộc Y.
Với:
x | 0 | 1 | 2 | 3 | 4 | 5 |
y | 1 | 3 | 5 | 7 | 9 | 11 |
f(x) là biểu thức đại số với biến x.
Ví dụ :
y = 2 : hàm hằng.
y = 2x +1: hàm số bậc nhất
y = x2 +2x -1: hàm số bậc 2
hàm số nhất biến .v .v …
Tập giá trị Y là tập hợp các giá trị của hàm số y.
Tập xác định X tập hợp các giá trị của biến số x. Tập xác định X của hàm số y xác định.
a. Định nghĩa
Đồ thị của hàm số y = f(x) là tập hợp các cặp giá trị tương ứng (x ; f(x)) trên mặt phẳng tọa độ.
* Ox :trục hoành.
* Oy : trục tung.
* O : gốc tọa độ.
* ( I) góc phần tư thứ I, (II) góc phần tư thứ iI,( III) góc phần tư thứ III,( IV) góc phần tư thứ IV.
c. Biểu diễn tọa độ một điểm A trên mặt phẳng tọa độ Oxy:
Ta có : A(xA ; yA) trong đó : xA: hoành độ của điểm A .
yA: hoành độ của điểm A .
ví dụ Biểu diễn tọa độ một điểm A(2 ; 3)
vẽ đồ thị của một hàm số trên mặt phẳng tọa độ:
y = x2 +2x – 1 (c); y = 2x + 1 (d)
cho A(xA ; yA) và hàm số y = f(x) có đồ thị (c). A thuộc (c) khi yA = f(xA)
ví dụ : A(1 ; 2) và B( -2 ; 1) có thuộc y = f(x) = x2 +2x – 1 (c)
Tính : f(xA) = f(1) = 12 +2.1 – 1 = 2 = yA
=> A € ( c).
f(xB) = f(-2) = (-2)2 +2.(-2) – 1 = 2 = -1 ≠ yB
=> B không nằm trên (C).
a. Định nghĩa
Cho hàm số y = f(x) xác định với mọi giá trị của x thuộc R.
b. Định lí : với x1, x2 thuộc R.
Ví dụ :hàm số sau đồng biến hay nghịch biến : y = f(x) = -2x +1
Giải
Tập xác định : R
với x1, x2 thuộc R sao cho x1 < x2 = > x2 – x1 > 0 (1)
tính : f(x1) = -2x1 +1; f(x2) = -2x2 +1
xét : f(x1) – f(x2) = (-2x1 +1) – (-2x2 +1) = -2x1 +1 +2x2 -1 = 2(x2 – x1) >0 (vì x2 – x1 > 0 )
=> f(x1) > f(x2) vậy : hàm số nghịch biến.
BÀI 1 TRANG 44:
Cho hàm số y = f(x) =
tính : f(-2) =
f(0) =
BÀI 7 TRANG 46:
Cho hàm số y = f(x) = 3x . Cho hai số x1, x2 thuộc R sao cho x1 < x2
Hãy chứng minh f(x1) < f(x2) rồi rút ra kết luận hàm số đồng biến trên R
Giải
Tập xác định : R
Cho hai số x1, x2 thuộc R sao cho x1 < x2= > x2 – x1 > 0
tính : f(x1) = 3x1 +1; f(x2) =3x2 +1
xét : f(x2) – f(x1) = 3x2 – 3x1 = 3(x2 – x1) >0 (vì x2 – x1 > 0 )
=> f(x1) < f(x2) vậy : hàm số đồng biến trên R .
Cho hàm số y = f(x).
Bước 1. Thế giá trị của biến x bằng x0. (chổ nào có x thế bằng x0).
Bước 2. Tính y0 = f(x0).
=================================
Ví dụ minh họa : cho hàm số y = f(x) = x3 + 2x2 -3x -1 tại x = 2.
Giài.
Y0 = f(2) = 23 + 2.22 -3.2 -1 ( bước 1).
= 9 (bước 2)
vậy : y0 = 9
Trung tâm luyện thi, gia sư - dạy kèm tại nhà NTIC Đà Nẵng
LIÊN HỆ NGAY VỚI CHÚNG TÔI ĐỂ BIẾT THÊM THÔNG TIN CHI TIẾT
ĐÀO TẠO NTIC
Địa chỉ: Đường nguyễn lương bằng, P.Hoà Khánh Bắc, Q.Liêu Chiểu, Tp.Đà Nẵng
Hotline: 0905540067 - 0778494857
Email: daotaontic@gmail.com
Gửi bình luận của bạn